Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(5): 3295-3308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726454

RESUMO

The multi-environmental trials aid breeders in selecting the best genotypes for specific or general adaptability to different environments before commercial release. This study aimed to assess the stability of 13 new soybean pure lines, along with two controls, in terms of seed yield and important agronomic traits. The assessment was based on a completely randomized block design with three replications across four areas during 2020-2022. Various adaptability methods, including parametric, AMMI, GGE biplot, PCA, and SIIG were employed. The mixed analysis showed that the effects of environment, genotype, and genotype-environment (GE) interaction were significant for most studied traits. The AMMI showed the highest portion of environment (65.89%) in soybean seed yield. Based on all stability parameters, lines 2 and 5 were selected for their average seed yields of 3349 and 3142 kg ha-1, respectively. Additionally, lines 6 and 5 showed the most stability, yielding higher than the average, which were 2992 and 3142 kg ha-1, respectively, according to GGE biplot results. Furthermore, lines 2, 5, and 8 were identified as the ideal genotypes concerning seed yield and other agronomic traits, with high SIIG parameters and yields exceeding the average. Finally, the soybean line 5 was deemed the most suitable due to its higher yield, stability, and early maturity (128-day growth period). Therefore, line 5 is considered appropriate for its high stability and earliness in various regions of Iran.

2.
Genes Genomics ; 41(2): 223-231, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30378005

RESUMO

INTRODUCTION: Some studies in wheat showed that awns may have a useful effect on yield, especially under drought stress. Up to this time few researches has identified the awn length QTLs with different effect in salinity stress. OBJECTIVE: The primary objective of this study was to examine the additive (a) and the epistatic (aa) QTLs involve in wheat awns length in control and saline environments. METHODS: A F7 RIL population consisting of 319 sister lines, derived from a cross between wheat cultivars Roshan and Falat (seri82), and the two parents were grown in two environments (control and Saline) based on an alpha lattice design with two replications in each environment. At flowering, awn length was measured for each line. For QTL analysis, the linkage map of the ''Roshan × Falat'' population was used, which included 748 markers including 719 DArT, 29 simple sequenced repeats (SSRs). Additive and pleiotropic QTLs were identified. In order to reveal the relationship between the identified QTL for awns length and the role of the gene or genes that it expresses, the awns length locus location and characteristics of its related CDS, gene, UTRs, ORF, exons and Introns were studied using ensemble plant ( http://plants.ensembl.org/Triticum_aestivum ). Furthermore, the promoter analysis has been done using NSITE-PL. RESULTS: We identified 6 additive QTLs for awn length by QTL Cartographer program using single-environment phenotypical values. Also, we detected three additive and two epistatic QTLs for awn length by the QTLNetwork program using multi-environment phenotypical values. Our results showed that none of the additive and epistatic QTLs had interactions with environment. One of the additive QTLs located on chromosome 4A was co-located with QTLs for number of sterile spikelet per spike in both environment and number of seed per spike in control environment. COCLUSION: Studies of the locus linked to the awns length QTL revealed the role of awn and its chloroplasts in grain filing during abiotic stress could be enhanced by over expression of some genes like GTP-Binding proteins which are enriched in chloroplasts encoded by genes included wPt-5730 locus.


Assuntos
Cloroplastos/genética , Locos de Características Quantitativas , Estresse Salino , Sementes/genética , Triticum/genética , Epistasia Genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento
3.
Physiol Mol Biol Plants ; 24(6): 1231-1243, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425437

RESUMO

In order to detect genomic regions with different effects for some of the physiological and biochemical traits of wheat, four experiments were conducted at Research Farm of Agricultural and Natural Resources Research Center of Zabol in 2015-2016 and 2016-2017 growing seasons. The experiments were carried out using four alpha lattice designs with two replications under non-stress and terminal heat stress conditions. Plant materials used in this study included 167 recombinant inbred lines and their parents ('SeriM82' and 'Babax'). Six traits including grain yield (GY), proline content (PRO), water soluble carbohydrates (WSC), maximum efficiency of photosystem II (Fv/Fm), cytoplasmic membrane stability (CMS) and chlorophyll content (CHL) were evaluated. Genetic linkage map consisted of 211 AFLP marker, 120 SSR marker and 144 DArT markers with 1864 cm length and 4.4 cm mean distance. QTL analysis was carried out using a mixed-model-based composite interval mapping (MCIM) method. By the combined analysis of normal phenotypic values, 27 additive QTLs and five pairs of epistatic effects were identified for studied traits, among which two additive and one epistatic QTL showed significant QTL × environment interactions. By the combined analysis of stress phenotypic values, a total of 26 QTLs with additive effects and 5 epistatic QTLs were detected, among which one additive and one epistatic QTL showed QTL × environment interactions. Six QTLs with major effects (QGY-2B, QGY-2D, QPro-5B, QWSC-4A, QFv/Fm-6A and QCMS-4B), which were common between two conditions could be useful for marker-assisted selection (MAS) in order to develop heat tolerant and high-performance wheat varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...